Accelerating Antibody Process Development: Exploring the Synergies Between Engineered Host Cells and Process Development

James Rance PhD
Head of Development Services Singapore
Lonza Biologics Tuas Pte Ltd

© Lonza, May 2014
Structure of Presentation

■ The GS System: The Background

■ Continuous Development of the System
 ■ Improved speed, efficiency and performance
 ■ Vector Development
 ■ Cell Line Generation
 ■ Production Process
 ■ Laboratory-Scale and Disposable Bioreactor Cultures

■ Summary
Disclaimer

Certain matters discussed in this presentation may constitute forward-looking statements. These statements are based on current expectations and estimates of Lonza Group Ltd, although Lonza Group Ltd can give no assurance that these expectations and estimates will be achieved.

The actual results may differ materially in the future from the forward-looking statements included in this presentation due to various factors. Furthermore, Lonza Group Ltd has no obligation to update the statements contained in this presentation.

Note: All slides are incomplete without verbal comments.
The GS Gene Expression System™ Family

- GS System™ is a gene expression system used for commercial manufacture of therapeutic proteins using mammalian cells and at scales up to 20,000 L

- Underlying philosophy of GS System is that it is a commercial system
 - Select cell lines to fit a commercially-relevant platform

- GS System™ can be used with a number of parental cell lines
 - NS0
 - CHO
 - Sp2/0-Ag14
The GS System™: Adopted for Therapeutics at Every Stage

- Active GS licences for more than 370 products
 - ~140 products manufactured using GS System in active human trials
 - Seen by authorities in Europe, N America, Japan…..
 - 14 marketed products manufactured using GS System (6 GS-CHO / 8 GS-NS0)
- Used for products in both human and animal healthcare markets
GS System™ Family

- GS Gene Expression System™
 - Track record of 14 marketed products
 - Six products in GS-CHO, 8 in GS-NS0
 - Potelligent® CHOK1SV and NS0

- GS Xceed™
 - Developed from GS System™
 - Launched July 2012
 - Available for use globally including Asia
 - CHOK1SV GS-KO
Glutamine Synthetase (GS) Gene Expression System™ - Principles

- Many mammalian cells require exogenous glutamine
 - Native trait e.g. NS0
 - Engineered-in trait e.g. CHOK1SV GS-KO

- Complementation of glutamine auxotrophy used as basis of GS Gene Expression System™
 - Vector encoding product gene plus GS gene, allowing glutamine synthesis and selection of recombinant cells

- Glutamine synthetase is inhibited by methionine sulfoximine (MSX)
 - Used for selection for potential high producers
 - Allows use of GS System™ with GS positive cell types (e.g. wt CHO)
GS Expression Vectors

- Strong promoter (mCMV) drives expression of the gene(s) of interest (GOIs)
- Weak promoter (SV40) on GS gene is coupled with selection in high (stringent) levels of MSX
 - Selects for integration at transcriptionally active loci
- GOIs and GS gene are on the same plasmid and tightly linked
 - Selection for integration of GS gene into transcriptionally active loci results in co-integration of GOIs into same loci
 - Expression of linked product gene, driven by strong promoter, enhanced by favourable integration site
- Range of signal peptide candidates for secretion optimisation
GS-CHOK1SV & GS-CHO-KO Cell Lines in Laboratory-scale Bioreactors: Lonza’s Experience

- Antibody concentrations achieved in > 50 development projects
 - Product concentrations achievable defined by CDR.
 - No clustering by antibody isotype (IgG1, IgG2 or IgG4).
 - Choice of Fc should be for desired effector function rather than for any productivity concern.
Stability of Productivity for Cell Lines Derived from GS Xceed™ System

- Antibody producing cell lines created using CHOK1SV GS-KO host were evaluated at an early stage
- Maintained MSX-free medium
- Productivity monitored every 15 to 20 generations in fed-batch shake-flask model
- 7 / 9 cell lines would be considered suitable for manufacturing
 - Change in mAb concentration across manufacturing window was in range [-20%, 20%]
- To-date 18 / 24 (75%) cell lines would be considered stable
 - 2 mAbs
Consistent Product Characteristics in Cell Line Stability Studies

- **CHOK1SV**
 - Data from 43 mAbs
 - No changes in PC observed

- **CHOK1SV GS-KO**
 - Data from 1 mAb, 6 cell lines
 - No change in PC observed across study
 - Size variants (reduced and non-reduced SDS-PAGE)
 - Charge variants (IEF)
 - Monomer and aggregate proportions (GP-HPLC)
 - Glycan profiles (MALDI-TOF-MS)
GS-CHO Platform Process

- Output of long-term, on-going continuous improvement project
- Fed-batch process designed specifically for GS-CHO cell lines
- Comprises: process parameter recommendations, media, and feeds
- Animal component-free, no hydrolysates, no proteins or polypeptides
 - CHOK1SV and its derivatives do not require insulin or Long-R³
- Integral part of the GS Xceed™ System
cGMP Manufacturing: Influence of GS-CHO Process on Harvest Concentration

- Stepwise improvements seen as Lonza platform evolves from Version 6 to Version 8.

- Data for each cell line are mean values from \(n \geq 1 \) runs and 60 different mAbs

- cGMP manufacturing bioreactors (200 L to 20,000 L)

- Harvested no later than 15 days after inoculation (day 15 is routine day of harvest for GMP manufacturing)
GS Xceed™ System: Performance of rec-GS-KO Cell Lines at Manufacturing Scales

- GS Xceed™ cell line evaluated at three scales
- Comparable product accumulation profiles and concentrations at harvest
Continuous Improvement in Vector Design, Cell Line Selection and Process Development
Vector Development

- GS Xceed™ System vectors are created as a single final vector for transfection
 - Two-step cloning process for mAbs or other two chain proteins.
 - Approaches can be employed to create GS expression vectors in a single step to reduce timelines.
Cell Line Development: Selection Strategies

SELECT EARLY
- Requires prediction of manufacturing behavior at very early stage
- Good predictive markers

SELECT LATE
- Selection occurs in manufacturing process and scale
- Requires assessment of large numbers of cell lines in manufacturing plant
- Lengthy and resource intensive
- Impractical

COMPROMISE
- Multiple steps using scale-down bioreactor models
- Economical
- Compatible with resources
GS Xceed™ System – Fast CLC&D

- 17 weeks from transfection to lead cell line, incl. selection for fit to commercial platform process.
- 200 to 1,000 clones; product concn; MWP
- 200 to 500; fit to media & feeds, product concn; DWPs
- 9 to 20; fit to inoculum process; E-flasks
- 9; growth; product concn & characteristics, etc; Ambr™
Selection Strategies: Finding the “Special One’

- Selection strategies identify high ranking cell lines
- Only census of all cell lines will find top ranked \(n \) cell lines
- Rank position of selected cell lines varies considerably between rounds
- Highest ranked cell lines can be ranked low in earlier rounds
- Progress as many as possible between rounds

Identifying High Performers with Reduced Screening

- For any screening round, probability density function describes distribution of product conc

- Biologically, upper limit to possible values

- No. of cell lines = \(\rho(\text{good cell line}) \times \text{no. screened} \)
Some of Lonza’s Antibody cGMP Experience With GS-CHO Cell Lines

- 56 different mAbs produced in cGMP facilities to-date
 - Excludes mAbs that did not progress beyond pilot-scale
 - Mix of IgG1, 2 & 4
 - Number of process iterations
 - Ph I to Ph III
- 75% of cell lines ≥2 g/L mAb
- 6% of cell lines ≥5 g/L mAb
Distribution of Harvest mAb Concentrations at Laboratory-Scale: Large & Wide Data-Set

- Using very simple model based upon cGMP and lab-scale data
 - Under-estimate screen size
- Cell line making at least 5 g/L, need to screen at least 135 to find one, on average
- ≥ 2 g/L, need to screen 3!

\[
P(\text{mAb} \geq 5 \text{ g/L}) = 0.12
\]

\[
P(\text{mAb} \geq 2 \text{ g/L}) = 0.54
\]
Selection Strategies with GS Xceed™ System

- High probability that generate cell lines capable of achieving minimum mAb concentration needed to supply clinical trial
- GS System™ capable of generating and isolating very high mAb producing cell lines
 - 6+ g/L, 80 – 95 pg/(cell·day)
- Consequently, large numbers of cell lines in range 2 – 4 g/L can be found
 - Caveat: mAb is inherently capable of achieving these concentrations
- Results:
 - Further development of cell line not needed
 - Process re-engineering shortens timeline above-and-beyond reductions achieved by biology
Improved Work-Flow for Selection of Clonal Cell Lines

1. Automated or manual colony sampling
 - Productivity assessment: 616 wells
 - Shaking 96-DWP

2. Fed-batch productivity assessment: 24/48 cell lines
 - Week ~11: choose 8 candidate cell lines
 - Week ~12: Cryo-preserve RCB
 - Week ~14: Choose lead cell lines Start cGMP MCB

Two rounds of screening

- Transfect CHOK1SV GS-KO host cells with vector
- Generate pools of transfectants
- Clone by FACS
- Automated colony identification
- 160 plates

GMP cell banking

Optional PQ & productivity screen: 8 cell lines

Transfect CHOK1SV GS-KO host cells with vector

Automated colony identification

Week ~11: Choose 8 candidate cell lines
Week ~12: Cryo-preserve RCB
Week ~14: Choose lead cell lines Start cGMP MCB

GMP cell banking

Optional PQ & productivity screen: 8 cell lines
Improved Bioreactor Processes

- Process understanding
 - Greater process understanding required by QbD applies to development of platform processes
- Stepwise iterative approach used to develop of the Version 8 process.
 - Further development of bioreactor processes currently using sophisticated DoE approaches
 - Increase productivity, increase robustness & resilience, reduce complexity
- Enhancing performance of a disposable bioreactor process
Product Profiles for ‘Model’ GS-CHO Cell Line LB01 in Laboratory-scale Bioreactors. Comparison between the v6, v7 & v8 processes

Viability at day 15
- v6: 90%
- v7: 79%
- v8: 43%

Process extended beyond the current routine harvest day for GMP manufacturing culture (day 15)
Improved Disposable Bioreactor Processes

- Disposable laboratory scale bioreactor cultures used for material generation for R&D and Development activities using the GS Xceed™ system.
- Improvements to physiochemical culture environment resulted in improved culture performance.
 - Achieved >2-fold increase in product concentration at harvest.
Next Generation GS Xceed™ Process

- Current development programme
 - Multiple stages and experimental rounds within stages
- Exemplar of experimental design
 - 11 factors, each at multiple levels, studied in 96 reactors
 - 54 responses (cell, product & metabolite concentrations)
- Development achieved in a reduced timeline due to use of automation.
- Experiment execution not possible in a commercially reasonable time-frame using reasonable resources without use of automation.
Process Development for GS Xceed™ Platform

- Use of automation brought process understanding efficiently
- Understand how the 11 factors define the process design space
- And output was predictive of behaviour at laboratory-scale
Summary

- GS Xceed™ System available for use in all major pharma-biotech markets **globally**
- Select cell lines for commercial manufacturing at 9 to 17 weeks after transfection
- Improved stability
- Cell lines are screened to fit GMP production process
- Philosophy of making continuous improvements to the system
- Vectors
- Cell line development strategies
- Production processes