Särö Conference 2009

Peptide purification strategies

Ulf Altenhöner
Lonza Exclusive Synthesis R&D
Outline

- Introduction
- Integrated process development
- Model-based process development
- Inspiration
- Conclusions
The leading supplier to the life-science industries

- **Production facilities worldwide**
 - Europe (CH, UK, CZ, BE, SP, F, D)
 - USA
 - Asia

- **Business activities**
 - LES - APIs & Intermediates, Synthetic and recombinant Peptides
 - LBP - Biopharmaceuticals
 - LSI - Agrochemicals & organic intermediates
 - LBS - Therapeutic Cells
Lonza’s History in Peptides and Oligos

- **1980** First peptide production in Braine-l’Alleud, Belgium.
- **1997** First peptide production in Visp, Switzerland (recombinant technology).
- **1999** Synthetic peptide production in Visp (solid phase synthesis).
- **2002** First oligonucleotide production in Visp.
- **2002** Dedicated Tides team in Visp formed (R&D, QC, QA).
- **2005** $20 million Tides investment in Visp (capacity enlargement, mid-scale plant, lyophylization, infrastructure).
- **2006** Lonza acquires UCB Bioproducts.
Custom Manufacturing:
Focused on Late Stage Development

- **Products**
 - Early intermediates
 - Advanced intermediates
 - **Bulk actives/drug substance**

- **A Broad Range of Production Scales**
 - Assists lifecycle management
 - Increases flexibility
 - Enables seamless scale-up
Requirements for an Industrial API manufacturing process

- **Quality by Design Concept**
 - Structured Process Development ensures consistent delivery of *quality*, *safety* and *efficacy objectives*
 - Ensures process robustness
 - Process scalability
 - Continuous improvement

- **Competitive process, determined by:**
 - Yield
 - Productivity
 - Number of unit operations
 - Cost of goods
Outline

- Introduction
- Integrated process development
- Model-based process development
- Inspiration
- Conclusions
„The sum of the optimal process steps is not equal to the optimal process!“

From Prof. Dr. rer. nat. K. H. Simmrock, Dortmund around 1990
Customer requirements

- Typical customer request:
 - product is a peptide/protein (10 to 50 amino acids)
 - delivery 1 kg 95 to 99% pure within 6 months after request for proposal
 - eventually single impurities specified
 - lyophilized as salt (e.g. acetate)
 - established laboratory process
Process Sketch

Structure formation

Purification

Concentration / Buffer exchange

Isolation

Product acc. Specifications
Integrated process development

- Multi step approach:
 - step 1: run a best process structure formation
 - step 2: run a best process purification
 - step 3: identify **critical impurities** in purification
 - use structure elucidating techniques (LC-MS, NMR etc.)
 - step 4: give feedback for structure formation
 - step 5: run improved structure formation
 - ...
 - step X: stop when:
 - a: no improvement is achieved anymore
 - b: proces performance targets are achieved
Example:
Structure formation by **Solid-Phase Peptide Synthesis**

1. **Coupling of the first amino-acid**
2. **Fmoc deprotection**
3. **Amino-acid coupling**
4. **Fmoc deprotection**
5. **Amino-acid coupling**
6. **Repeat n times**
7. **Cleavage + deprotection**

Schema by Prof. F. Albericio, Institut de Recerca Biomedica, Barcelona, IRB-PCB
Impurities!

During the peptide assembly in SPPS the following impurities will be formed:

- Impurities in starting materials
- Impurities formed during peptide elongation
 - Isomers
 - Double hits
 - Deletion products
 - Side products from reactions with coupling reagents, deprotection reagents or solvents
 - Side products from other reactions on side chain functionalities
Example 1: Impurities!

- double hit AA, deletions, diastereomers
Evaluation of impurity influences

- Score 1: Yield loss in structure formation
- Score 2: Yield loss in purification
- Score 3: Productivity limiting in purification
Example 2: Integrated Process Development

- Purification by RP-HPLC

 Crude peptide

<table>
<thead>
<tr>
<th>Minutes</th>
<th>AU 0.0056</th>
<th>AU 0.0112</th>
<th>AU 0.0168</th>
<th>AU 0.0224</th>
<th>AU 0.0280</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.20</td>
<td>0.000</td>
<td>0.006</td>
<td>0.012</td>
<td>0.018</td>
<td>0.024</td>
</tr>
<tr>
<td>40.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Pure peptide

<table>
<thead>
<tr>
<th>Minutes</th>
<th>AU 0.000</th>
<th>AU 0.006</th>
<th>AU 0.012</th>
<th>AU 0.018</th>
<th>AU 0.024</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.20</td>
<td>0.000</td>
<td>0.006</td>
<td>0.012</td>
<td>0.018</td>
<td>0.024</td>
</tr>
<tr>
<td>40.798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.317</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.784</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.662</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.065</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.906</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peptide Area%: 58.9%
RRT 0.99: 8.9%

Peptide Area%: 94.9%
RRT 0.99: 3.5%

- RRT 0.99 was identified via MS/MS: AA double hit
Example 2: Integrated Process Development Results

<table>
<thead>
<tr>
<th>Reaction #</th>
<th>Time (h)</th>
<th>Coupling reagent</th>
<th>Temperature °C</th>
<th>Conversion %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72</td>
<td>TCTU</td>
<td>20</td>
<td>92.2%</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>DIC / 6-CI-HOBt</td>
<td>40</td>
<td>99.6%</td>
</tr>
</tbody>
</table>

Peptide Area%: 75.3%
RRT 0.99: 0.9%

Peptide Area%: 98.8%
RRT 0.99: 0.3%
Outline

- Introduction
- Integrated process development
- Model-based process development
- Inspiration
- Conclusions
Model-based Process Optimization

Example

- The Peptide:
 - Lonza Code XX-003 - 4 kDa polypeptide (39 AA)
 - Produced by solid-phase synthesis

- The Process:
 - 2-step chromatographic process
 - 1st step: H₂O-AcN, TEAP buffer
 - 2nd step: H₂O-AcN, AcOH buffer
 - Overall Yield: 51.3% (no recycled fractions)
 - Overall Productivity: 0.012 g/L/min

- Specifications:
 - Overall purity 97%
 - Max. single impurity <1%
Model-based Process Optimization

The Strategy

- Model calibration for pure component
- Impurity characterization
- Pareto optimization of gradient & load
- Optimal batch process
Pure Component Parameter Estimation

First Chromatographic Step (TEAP)

- Henry coefficient

![Graph showing Henry coefficient vs concentration AcN (g/L)]
Pure Component Parameter Estimation
First Chromatographic Step (TEAP)

Full Isotherm Estimation
- Linear Conditions
- Overloaded Conditions
Pure Component Parameter Estimation

First Chromatographic Step (TEAP)

- Anti-Langmurian behavior with gradient elutions

Moreau Isotherm
- Account for adsorbate-adsorbate interactions

Gradient: 20-70%B in 30min
Bi-Moreau Isotherm

The Equations

\[q_{i}^{eq} = \frac{c_i H_{i,i} + q_{i,i}^e \Omega_{i,i}}{1 + \sum_j \left(c_j \frac{H_{i,j}^e}{q_{i,j}^e} + \Omega_{i,j}^e \right)} + \frac{c_i H_{\Pi,i} + q_{i,i}^\infty \Omega_{\Pi,i}^e}{1 + \sum_j \left(c_j \frac{H_{\Pi,j}^e}{q_{\Pi,j}^\infty} + \Omega_{\Pi,j}^e \right)} \]

\[H_i = \alpha_1 \left(c_M \right)^{\alpha_2} \]
\[H_{\Pi,i} = \alpha_3 \left(H_i \right)^{\alpha_4} \]
\[H_{i,i} = H_i - H_{\Pi,i} \]

\[q_{i,i}^e = \frac{\alpha_5 H_{i,i}}{1 + \frac{\alpha_5}{\alpha_6} H_{i,i}} \]
\[q_{\Pi,i}^\infty = \frac{\alpha_7 H_{\Pi,i}}{1 + \frac{\alpha_7}{\alpha_8} H_{\Pi,i}} \]

\[\Omega_{i,i} = \alpha_9 \left(H_{i,i} \right)^{\alpha_{10}} \left(c_i \frac{H_{i,i}}{q_{i,i}^e} \right)^2 \]
\[\Omega_{\Pi,i} = \alpha_{11} \left(H_{\Pi,i} \right)^{\alpha_{12}} \left(c_i \frac{H_{\Pi,i}}{q_{\Pi,i}^\infty} \right)^2 \]

Equilibrium Adsorption Surface

Langmuir behavior

Anti-Langmuir behavior
Model-based Process Optimization

The Strategy

- Model calibration for pure component
- Impurity characterization
- Pareto optimization of gradient & load
- Optimal batch process
Impurity Parameter Estimation

First Chromatographic Step (TEAP)

- Characterization of key impurities
Model-based Process Optimization

The Strategy

- Model calibration for pure component
- Impurity characterization
- Pareto optimization of gradient & load
- Optimal batch process
Model-based Process Optimization

Pareto Curve (95% purity)

- Productivity vs Yield
Model-based Process Optimization

Pareto Curve (95% purity)

- Loading vs Yield
Model-based Process Optimization

The Strategy

- Model calibration for pure component
- Impurity characterization
- Pareto optimization of gradient & load
- Optimal batch process
Optimal Batch Process
Experimental Validation

- current method
- experimental result
- chosen point
Optimal Batch Process
Experimental Validation

- Simulation of recommended gradient
Optimal Batch Process
Experimental Validation

- Experimental verification: UV + fraction analysis
Process Summary
Chromatography 1 + 2

Experimental validation

<table>
<thead>
<tr>
<th></th>
<th>Old Process</th>
<th>New Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>column load [mg/ml]</td>
<td>5.6</td>
<td>3.44</td>
</tr>
<tr>
<td>purity [%]</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>yield [%]</td>
<td>57</td>
<td>80</td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.023</td>
<td>0.054</td>
</tr>
<tr>
<td>process time [min]</td>
<td>140</td>
<td>57</td>
</tr>
<tr>
<td>Recycle 1st purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>percentage recycled [%]</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>yield recycling [%]</td>
<td>36</td>
<td>70</td>
</tr>
<tr>
<td>load recyle [mg/mL]</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>main runs per recyle</td>
<td>8.40</td>
<td>2</td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>OVERALL 1st purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>purity [%]</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>yield [%]</td>
<td>63.12</td>
<td>92.6</td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.023</td>
<td>0.044</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Old Process</th>
<th>New Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>column load [mg/ml]</td>
<td>8</td>
<td>6.17</td>
</tr>
<tr>
<td>purity [%]</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>yield [%]</td>
<td>74</td>
<td>89.4</td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.06</td>
<td>0.128</td>
</tr>
<tr>
<td>process time [min]</td>
<td>100</td>
<td>43</td>
</tr>
<tr>
<td>Recycle 2nd purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>percentage recycled [%]</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>yield recycling [%]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>load recyle [mg/mL]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>main runs per recyle</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.0288</td>
<td></td>
</tr>
<tr>
<td>OVERALL 2nd purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>purity [%]</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>yield [%]</td>
<td>81.2</td>
<td>89.4</td>
</tr>
<tr>
<td>productivity [mg/mL/min]</td>
<td>0.05474</td>
<td>0.128</td>
</tr>
</tbody>
</table>
Inspiration

- 0.2 % TFA
- 0.05 % TFA
Summary

- Integrated Process Development:
 - easy to use
 - no “tools“ needed
 - all about communication

- Model based Process Development:
 - Current process has been largely improved
 - Higher process yield
 - Higher productivity
 - Quality by design can be applied
 - Flexible optimization of production conditions
 - Simpler validation and qualification procedures
Acknowledgments

- Ariette Imboden (Lonza)
- Christine Werlen (Lonza)
- Dr. Holger Hermann (Lonza)
- Dr. Patrick Moebius (Lonza)
- Dr. Francesca Quattrini (Lonza)
- Dr. Alessandro Butte (Lonza)
- Prof. Massimo Morbidelli (ETH Zurich)
- Dr. Guido Ströhlein (ChromaCon AG)
- Dr. Lars Aumann (ChromaCon AG)
- Prof. F. Albericio, Institut de Recerca Biomèdica, Barcelona, IRB-PCB
- Dr. Olav Lyngberg (Bristol-Myers Squibb Company)
- Dr. Douglas Riexinger (Bristol-Myers Squibb Company)
Thank you for your attention!