Poietics™ Human Dental Pulp Stem Cells
DPSC – Instructions for Use

Unpacking and Storage Instructions

1. Check all containers for leakage or breakage.

2. For cryopreserved cells: Remove cryovials from the dry ice packaging and immediately place into liquid nitrogen storage. Alternatively, thaw and use the cells immediately. If no dry ice remains, please contact Customer Service.

3. BulletKit™ Medium instructions: store basal medium at 2° -8° C and SingleQuots™ Kit at ≤-20° C in a freezer that is not self-defrosting. Once thawed, SingleQuots™ Kit should be stored at 2°-8° C and added to basal medium within 72 hours. After SingleQuots™ Kit is added to basal medium, use within 1 month. Do not re-freeze. Using medium or reagents other than what is recommended will void the cell warranty. Please contact Scientific Support if you need help selecting media and/or reagents.

4. ReagentPack™ Subculture Reagents are sterile-filtered and then stored at −20°C until shipment. Subculture reagents may thaw during transport. They may be refrozen once. If you plan to use within 3 days, store at 4°C. Trypsin/EDTA Solution has a limited shelf life or activation at 4°C. If, upon arrival, Trypsin/EDTA is thawed, immediately aliquot and refreeze at −20°C. We recommend that the HEPES-BSS and the Trypsin Neutralizing Solution be stored at 4°C for no more than one month.

NOTE: To keep Trypsin/EDTA fresh and active after thawing, you may aliquot it into sterile centrifuge tubes and re-freeze at −20°C.

Using media or reagents other than what is recommended will void the cell warranty. Please contact Scientific Support if you need help selecting media and/or reagents.

Preparation of Media

1. Decontaminate external surfaces of all vials and the medium bottle with ethanol or isopropanol.

2. To formulate Dental Pulp Stem Cell Growth Media (DPSC-GM Medium), transfer the contents of the DPSC SingleQuots™ Kit (Catalog No. PT-4516 containing human Dental Pulp Stem Cell Growth Supplement [DPSCGS], L-glutamine, Ascorbic Acid, and Gentamicin/Amphotericin-B [GA]) to DPSC Basal Medium with a pipette, and rinse each vial with medium.

3. When preparing these BulletKit™ Media, it may not be possible to recover the entire volume listed for each vial. Small losses (up to 10%) should not affect the cell growth characteristics of the supplemented medium.

4. Transfer the label provided with each kit to the basal medium bottle(s) being supplemented.
(avoid covering the basal medium lot # and expiration date). Use it to record the date and amount of each supplement added.

NOTE: If there is concern that sterility was compromised during the supplementation process, the entire newly prepared growth medium may be re-filtered with a 0.2 µm filter to help assure sterility. Routine re-filtration is not recommended.

Thawing of Cells / Initiation of Culture Process
1. The recommended seeding density for DPSC is 5,000-6,000 cells/cm².
2. To set up cultures, calculate the number of vessels needed based on the recommended seeding density and the surface area of the vessels being used. Do not seed cells directly into a well plate directly out of cryopreservation. Add the appropriate amount of medium to the vessels (1 ml/5 cm²) and allow the vessels to equilibrate in a 37°C, 5% CO₂, humidified incubator for at least 30 minutes.
3. Wipe cryovial with ethanol or isopropanol before opening. In a sterile field, briefly twist the cap a quarter turn to relieve pressure, and then retighten. Quickly thaw the cryovial in a 37°C water bath, being careful not to submerge the entire vial. Watch your cryovial closely; when the last sliver of ice melts, remove it. Do not submerge it completely. Thawing the cells for longer than 2 minutes results in less than optimal results.
4. Resuspend the cells in the cryovial and using a micropipette, dispense cells into the culture vessels set up earlier. Gently rock the culture vessel to evenly distribute the cells and return to the incubator.
5. Centrifugation should not be performed to remove cells from the cryoprotectant cocktail. This action is more damaging than the effects of DMSO residue in the culture.

Preparation for Subculturing the First Flask:
1. Subculture the cells when they are just subconfluent (approximately 90% confluent).
2. For each 25 cm² of cells to be subcultured:
 a. Thaw 2 ml of Trypsin/EDTA and allow to come to room temperature.
 b. Allow 7-10 ml of HEPES Buffered Saline Solution (HEPES-BSS) to come to room temperature.
 c. Allow 4 ml of Trypsin Neutralizing Solution (TNS) to come to room temperature.
 d. Remove growth medium from 4°C storage and allow warming to room temperature.
 e. Prepare new culture vessels.
3. Subculture one flask at a time. All flasks following the first flask will be subcultured following an optimization of this protocol (explained later in this procedure), based on calculated cell count, cell viability, and seeding density.

In a Sterile Field:
1. Aspirate the medium from one culture vessel.
2. Rinse the cells with 5 ml of room temperature HEPES-BSS. DO NOT forget this step. The medium contains complex proteins and calcium that neutralize the trypsin.
3. Aspirate the HEPES-BSS from the flask.
4. Cover the cells with 2 ml of Trypsin/EDTA solution.
5. Examine the cell layer microscopically.
6. Allow the trypsinization to continue until approximately 90% of the cells are rounded up. This entire process takes about two to six minutes, depending on cell type.
7. At this point, tap the flask against the palm of your hand to release the majority of cells from the culture surface. If only a few cells detach, you may not have let them trypsinize long enough. Wait 30 seconds and tap again. If cells still do not detach, wait and tap every 30 seconds thereafter.
8. After cells are released, neutralize the trypsin in the flask with 4 ml of room temperature Trypsin Neutralizing Solution. If the majority of cells do not detach within seven minutes, the trypsin is either not warm enough or not active enough to release the cells. Harvest the culture vessel as described above, and either re-trypsinize with fresh, warm Trypsin/EDTA solution or rinse with
Trypsin Neutralizing Solution and then add fresh, warm medium to the culture vessel. Return to an incubator until fresh trypsinization reagents are available.

9. Quickly transfer the detached cells to a sterile 15 ml centrifuge tube.

10. Rinse the flask with a final 2 ml of HEPES-BSS to collect residual cells, and add this rinse to the centrifuge tube.

11. Examine the harvested flask under the microscope to make sure the harvest was successful by looking at the number of cells left behind. This should be less than 5%.

12. Centrifuge the harvested cells at 220 x g for five minutes to pellet the cells.
 a. Aspirate most of the supernatant, except for 100-200 μl.
 b. Flick the conical tube with your finger to loosen the pellet.

13. Dilute the cells to a final volume of 2 to 3 ml of growth medium and note the total volume of the diluted cell suspension.

14. Determine cell count and viability using a hemacytometer and Trypan Blue. Make a note of your cell yield for later use.

15. If necessary, dilute the suspension with the HEPES Buffered Saline Solution (HEPES-BSS) to achieve the desired “cells/ml” and re-count the cells.

16. Use the following equation to determine the total number of viable cells.

$$\text{Total # of Viable Cells} = \frac{\text{Total cell count} \times \text{percent viability}}{100}$$

17. Determine the total number of flasks to inoculate by using the following equation. The number of flasks needed depends upon cell yield and seeding density.

$$\text{Total # of Flasks to inoculate} = \frac{\text{Total # of viable cells}}{\text{Growth area} \times \text{Rec. Seeding Density}}$$

18. Use the following equation to calculate the volume of cell suspension to seed into your flasks.

$$\text{Seeding Volume} = \frac{\text{Total volume of diluted cell suspension}}{\# \text{ of flasks as determined in step 18}}$$

19. Prepare flasks by labeling each flask with the passage number, strain number, cell type and date.

20. Carefully transfer growth medium to new culture vessels by adding 1 ml growth medium for every 5 cm² surface area of the flask (1 ml/5 cm²).

21. After mixing the diluted cells with a 5 ml pipet to ensure a uniform suspension, dispense the calculated volume into the prepared subculture flasks.

22. If not using vented caps, loosen caps of flasks. Place the new culture vessels into a 37°C humidified incubator with 5% CO₂.

Maintenance

1. Change the growth medium the day after seeding and every 3-4 days thereafter.

2. Warm an appropriate amount of medium to 37°C in a sterile container. Remove the medium and replace it with the warmed, fresh medium and return the flask to the incubator.

3. Avoid repeated warming and cooling of the medium. If the entire contents are not needed for a single procedure, transfer and warm only the required volume to a sterile secondary container.

Quality Control

All cells are performance assayed and test negative for HIV-1, mycoplasma, Hepatitis-B, Hepatitis-C, bacteria, yeast and fungi. Cell viability, cell number, plating efficiency, morphology and proliferative capacity are measured after recovery from cryopreservation. Poietics™ Media are formulated for optimal growth of specific types of normal human cells. Certificates of Analysis (COA) for each cell strain are shipped with each order. COAs for all other products are available upon request.
Ordering Information

Cryopreserved Dendritic Pulp Stem Cells
(Single Donor):

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-5025</td>
<td>DPSC</td>
<td>≥1,000,000 cells</td>
</tr>
</tbody>
</table>

Dental Pulp Stem Cell Growth Media
(Sold Separately):

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-3005</td>
<td>DPSC BulletKit™ Medium</td>
<td>500 ml DPSC Basal Medium plus PT-4105 SingleQuots™ Kit to formulate DPSC-GM Medium (growth medium)</td>
</tr>
<tr>
<td>PT-3927</td>
<td>DPSC Basal Medium</td>
<td>Dental pulp stem cell basal medium (500 ml)</td>
</tr>
<tr>
<td>PT-4516</td>
<td>DPSC SingleQuots™ Kit</td>
<td>Formulates 500 ml of DPSC Basal Medium to DPSC-GM Growth Medium; contains DPSCGM, 50 ml; L-glutamine, 10.0 ml; Ascorbic Acid, 5.0 ml; GA, 0.5 ml.</td>
</tr>
</tbody>
</table>

Subculturing Reagents (Sold Separately):

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Product</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-3233</td>
<td>ReagentPack™</td>
<td>Provides necessary components for subculture of DPSC; contains Trypsin/EDTA Solution, 100 ml; Trypsin Neutralizing Solution (TNS), 100 ml; HEPES Buffered Saline Solution, 100 ml</td>
</tr>
</tbody>
</table>

Product Warranty

Cultures have a finite lifespan in vitro.

Lonza guarantees the performance of its cells in the following manner only if Poietics™ Media and Reagents are used exclusively, and the recommended protocols are followed. Cryopreserved DPSC are assured to be viable and functional when thawed and maintained properly.

When placing an order or for Scientific Support, please refer to the product numbers and descriptions listed above. For a complete listing of all Poietics™ Products, refer to the Lonza website or the current Lonza catalog. To obtain a catalog, additional information or want to speak with Scientific Support, you may contact Lonza by web, e-mail, telephone, fax or mail (See page 1 for details).

THESE PRODUCTS ARE FOR RESEARCH USE ONLY. Not approved for human or veterinary use, for application to humans or animals, or for use in clinical or in vitro procedures.

WARNING: CLONETICS™ AND POIETICS™ PRODUCTS CONTAIN HUMAN SOURCE MATERIAL, TREAT AS POTENTIALLY INFECTIOUS. Each donor is tested and found non-reactive by an FDA-approved method for the presence of HIV-1, hepatitis B virus and hepatitis C virus. Where donor testing is not possible, cell products are tested for the presence of viral nucleic acid from HIV, hepatitis B virus, and hepatitis C virus. Testing cannot offer complete assurance that HIV-1, hepatitis B virus, and hepatitis C virus are absent. All human-sourced products should be handled at the biological safety level 2 to minimize exposure of potentially infectious products, as recommended in the CDC-NIH manual, Biosafety in Microbiological and Biomedical Laboratories, 5th ed. If you require further information, please contact your site safety officer or Scientific Support.

All trademarks herein are marks of Lonza Group or its subsidiaries.